Graduate Student Guide
Revised Spring 2016

Contents

1. Application 2
2. Advising 2
3. Requirements for the MS degree in Physiology 3
4. Requirements for the Ph.D. degree in Physiology 3
5. Core Courses 4
6. Teaching 5
7. Guidelines for the MIP Qualifying Examination 5
8. Student Advisory Committee 11
9. Preliminary Examination 11
10. Thesis 12
11. Switching of Advisors or Programs 13
12. Ethical Conduct 13
13. Grievances 14
Appendix A - Course Menu 15
Appendix B - Summary of Schedule and Deadlines 16
Appendix C - Annual Meetings 17
Appendix D – Annual Report Form 18
MIP Graduate Student Annual Progress Report 8/15/16 - 8/15/17 19
Cumulative History 20
Appendix E – MIP Qualifying Exam Face Page 21
1. Application

Application for admission is submitted online to the School of Molecular and Cellular Biology with the field of specialization as Molecular and Integrative Physiology. Applicants whose junior-senior grade point average is 3.0 or better (scale of 4.0) will be considered for standard admission. Applicants with averages between 2.6 and 3.0 will be considered, and may be admitted on limited status (i.e., on a probationary basis) if letters of recommendation are strong and indicate the ability for graduate work. Transfer graduate students will be judged on the basis of past performance.

2. Advising

All second semester graduate students will meet with the Director of Graduate Studies and the Graduate Student Advising Committee before classes begin in the spring and as many times as necessary thereafter during the first academic year. The Committee will advise students on their coursework and Departmental, Graduate College, and University regulations and requirements. Requests for course substitutions, waivers, and proficiency examinations will be considered for approval by the MIP Courses and Curriculum Committee.

Each graduate student will choose an Academic Advisor, a faculty member willing to advise and sponsor the student in research and in academic matters. Research sponsorship for the M.S. degree commits neither the student nor the Advisor to continue the relationship when the student becomes a candidate in the Ph.D. degree. A summary of the schedule of the milestones and examinations required to complete the Ph.D. program is in Appendix B.

Each student will be required to write an annual report that will include: a summary of research progress, presentations, publications, date of exam completion, and/or estimated dates of milestones (see Appendix D). The annual reports will be due each year on August 15. Reports will be reviewed by the student’s advisor, the Head, the Director of the Graduate Studies, and the student’s thesis committee, if formed. The Head will send a written review of the report to the student and the student’s advisor and a copy will be placed in the student’s file.

Each post-qualifying student will meet annually with his/her thesis committee to review progress. This requirement can be met by the Advisory Committee Meeting, the Preliminary Exam, the Thesis Defense, or by a Thesis Committee progress meeting scheduled in years in which none of these formal meetings occurs (see Appendix C).
3. Requirements for the MS degree in Physiology

Normally, students are awarded the Master’s Degree after passing the Departmental Qualifying Examination (see section VII). Satisfactory completion of the Core Courses (see section V) is required before the student can be awarded a Master’s Degree. The requirements for the Master’s Degree include:

1. Completion of 32 hours of study including the Core Courses with a grade of A or B. [The Graduate College requires a minimum of 32 semester hours of graduate credit for the master’s degree. All hours must be at the 400-level or greater. At least 12 hours must be in 500-level courses.]

2. For students whose native language is other than English, successful completion of the EPI is also required before the Qualifying Examination can be taken.

3. Submission of a satisfactory Qualifying Examination paper.

4. Satisfactory performance on the Qualifying Examination (see section VII).

4. Requirements for the Ph.D. degree in Physiology

The requirements for the Ph.D. are:

1. Successful completion of 96 hours of study including the Core Courses (with a grade of A or B), as well as the preliminary and final examinations. At least 64 of the hours, which may include thesis credit, must be earned as residence credit in courses on the UIUC, UIC, or UIS campus, or in courses meeting in other locations that have been approved by the Graduate College,

2. Satisfactory performance on the Qualifying Examination (see section VII),

3. Completion of the teaching requirement (see section VI),

4. Satisfactory performance on the Preliminary Examination (see section IX),

5. Satisfactory defense of the Thesis at the Final Examination (see section X),

5. Core Courses

The following courses are required for all:

- Molecular & Cellular Biology 401 and 402, College of Medicine M1 Physiology (both semesters; restricted to only M.D./Ph.D. students) or equivalent or proficiency exam
- Molecular & Cellular Biology 509 (Current Topics in MIP; every other Fall)
- Molecular & Integrative Physiology 595 (Seminars in Physiology)
- Molecular & Cellular Biology 501 (Advanced Biochemistry)
- Molecular & Cellular Biology 502 (Advanced Molecular Genetics)
- Molecular & Cellular Biology 580 (Research Ethics & Responsibilities)
- Molecular & Cellular Biology 581, 582, & 583 (3 Laboratory Rotations)
- Six credit hours taken from courses listed in the Course Menu (See Appendix A)
- Students may, in consultation with the MIP Courses and Curriculum Committee, petition to alter or amend the required courses.

Upon the recommendation of the Advisory Committee, additional course work may be assigned if the committee determines that the student lacks proficiency in areas that are germane to the student’s area of research.

Molecular & Cellular Biology 509 is taken during the Fall semester of the second year. This course will consist of two formal lectures each week to cover current topics in physiology. Because of the nature of the course, the topics, requirements and professors teaching a particular area will vary from year to year.

Students are required to register for Molecular & Integrative Physiology 595 each semester until passing the Qualifying Examination. Attendance of seminars is required for all graduate students.

The Molecular & Cellular Biology 581, 582, and 583 (three, 5-week laboratory rotations) requirement provides valuable, direct interaction with faculty, and laboratory experiences that cannot be obtained in the lecture setting. To fulfill this requirement, a student must successfully complete three laboratory rotations. It is expected that students will devote approximately 20 hours/week for each rotation.
If a student fails to receive a grade of “B” or better in one of the above courses, he/she must either pass a proficiency exam on the first attempt (after a sufficient period of self study) or take the course over. Failure to obtain a course grade of “B” or better in the second attempt will result in the student’s dismissal from the Ph.D. program.

6. Teaching

Experience as a teacher is essential for a student’s development as a scholar. All graduate students in the Program are required to teach during their graduate training. The minimum teaching requirement is 50% for one semester. However, it is strongly recommended that students gain experience equivalent to 50% for at least two semesters. Students whose native language is other than English are required to pass the EPI test to serve as a teaching assistant.

Failure to pass the EPI test prior to taking the Qualifying Examination will result in a student’s dismissal from the Program. “INTERNATIONAL STUDENT ORAL ENGLISH PROFICIENCY TESTING – GRADUATE STUDENTS FOR WHOM ENGLISH IS NOT THEIR NATIVE LANGUAGE MUST ACHIEVE A SCORE OF 5 OR HIGHER ON THE ENGLISH PROFICIENCY INTERVIEW (EPI). IT IS THE STUDENT’S RESPONSIBILITY TO TAKE THE EPI DURING THE FIRST YEAR IN THE MIP PROGRAM. STUDENTS MUST REGISTER FOR ANY SUBSEQUENTLY REQUIRED ESL COURSES IF NEEDED BEFORE THE END OF THE THIRD YEAR. STUDENTS WHO DO NOT PASS THE EPI AFTER THREE ATTEMPTS, WILL BE DISMISSED FROM THE MIP PROGRAM.”

PLEASE NOTE THAT A SCORE OF 24 OR HIGHER ON THE SPEAKING SUB-SECTION OF THE TOEFL iBT WILL CONTINUE TO CERTIFY NON-NATIVE ENGLISH SPEAKING STUDENTS’ ELIGIBILITY FOR TEACHING ASSISTANTSHIPS.

7. Guidelines for the Molecular and Integrative Physiology Qualifying Examination

The Qualifying Examination is administered by the Qualifying Examination Committee (see below). The main purpose of the Qualifying Examination is to determine whether a student is qualified to pursue a Ph.D. degree. The exam also serves as an evaluation of a student’s progress over the first two years, and as the general
examination for the M.S. degree. In accordance with Graduate College guidelines, all students should take the Qualifying Examination by their fourth semester of graduate study. It is expected that a student will have satisfactorily completed (or is about to complete) all the Core Courses prior to taking the Qualifying Examination. Students must have passed the EPI test before they can sit for the Qualifying Examination.

The Qualifying Examination has Written and Oral Components

The Faculty Advisor will submit a letter to the Qualifying Committee evaluating the student’s scientific and intellectual abilities, technical skills, and commitment to graduate study and research.

Each student is required to submit a Qualifying Paper before taking the oral examination. The paper should be submitted to the department office with a complete face page (available as Appendix E of this Student Guide) by 4 p.m. on March 15 for the Spring semester and October 15 for the Fall semester or the following Monday if these dates fall on the weekend. Papers that deviate from the suggested format (see below) will not be accepted for evaluation. Before submission of the paper, the student’s advisor must certify that the paper conforms to the suggested format of the qualifying paper. Once the paper is accepted for evaluation by the Qualifying Committee, the examination date will be set, and the student will be informed.

The Qualifying Paper is in the form of a National Institutes of Health Pre-doctoral Research Proposal (see below). The scope of the proposed research should be that of a thesis project, i.e. the amount of research that can feasibly be accomplished by a single student in several years. The Qualifying paper should be the student’s own creative work. The student should discuss the general topics of the paper with his/her advisor and the advisor may review and make limited comments on a draft before submission of the final paper. Papers that exceed the maximum page limit of ten pages for Specific Aims and Research Strategy (see below) will not be accepted for evaluation. Specific instructions for preparing the Qualifying Paper follow.

General Format of Written Component of Qualifying Examination

The format of the written proposal will follow that of the NIH F31 individual pre-doctoral fellowship application, which specifically includes the Specific Aims and Research Strategy sections. The guidelines for those sections are listed below, and come from NIH publication PHS SF424 (R&R). Page limits are indicted below. For fonts use Arial, Helvetica, Palatino Linotype, or Georgia typeface, a black font color, and a font size of 11 points or larger. (A symbol font may be used to insert
Greek letters or special characters; the font size requirement still applies). Type density, including characters and spaces, must be no more than 15 characters per inch. The text is single-spaced, but type may be no more than six lines per inch. Use standard paper size (“8 ½ x 11”). Use at least one-half inch margins (top, bottom, left and right) for all pages. No information should appear in the margins.

Proposal Sections

1. Cover Page:

The cover page should include the title of the project, your name, and your advisors name. The title should be short and descriptive of the specific project proposed.

2. Specific Aims (*limited to 1 page of text*):

State concisely the goals of the proposed research and summarize the expected outcome(s), including the impact that the results of the proposed research will exert on the research field(s) involved. (Note, this section outlines the objectives and describes concisely what the specific research described in the proposal is intended to accomplish and an hypotheses to be treated.)

3. Research Strategy (*limited to 9 pages of text; figures and tables are placed after References Cited*):

Organize the Research Strategy in the specified order and using the instructions provided below. Start each section with the appropriate section heading – Significance, Innovation, Approach. Cite published experimental details in the Research Strategy section and provide the full reference in the References Cited section.

(a) Significance

- Explain the importance of the problem or critical barrier to progress in the field that the proposed project addresses.
- Explain how the proposed project will improve scientific knowledge, technical capability, and/or clinical practice in one or more broad fields.
- Describe how the concepts, methods, technologies, treatments, services, or preventative interventions that drive this field will be changed if the proposed aims are achieved.
(b) Innovation (the Innovations section is optional)

- Explain how the application challenges and seeks to shift current research or clinical practice paradigms.

- Describe any novel theoretical concepts, approaches or methodologies, instrumentation or interventions to be developed or used, and any advantage over existing methodologies, instrumentation, or interventions.

- Explain any refinements, improvements, or new applications of theoretical concepts, approaches or methodologies, instrumentation, or interventions.

(c) Approach

- Describe the overall strategy, methodology, and analyses to be used to accomplish the specific aims of the project. Include how the data will be collected, analyzed, and interpreted.

- Discuss potential problems, alternative strategies, and benchmarks for success anticipated to achieve the aims.

- If the project is in the early stages of development, describe any strategy to establish feasibility, and address the management of any high risk aspects of the proposed work.

- If an applicant has multiple Specific Aims, then the applicant should address Significance, Innovation (optional), and Approach for each Specific aim individually. You should also incorporate information on any of your Preliminary Studies that pertain to each Specific Aim within the Significance and Approach subsections, where this is best suited.

(Note, this section should include some background to the present proposal, critically evaluate existing knowledge, and specifically identify the questions that the proposal is intended to answer. State concisely the importance of the research described in the proposal and broad, long-term objectives as this relates to each of the Specific Aims. This section outlines the experimental design and the procedures to be used to accomplish the specific aims of the project. Include the means by which the data will be collected, analyzed, and interpreted. You may describe any new (innovative) methodology or assay and its advantage over existing methodologies. Discuss the potential difficulties and limitations of the proposed procedures and alternative approaches to achieve the specific aims.)
(Also Note: The total number of pages for the Specific Aims and the Research Strategy combined may not exceed ten pages excluding figures and tables. Papers that exceed the maximum page limit (ten pages: one page Specific Aims plus nine page Research Strategy) will not be accepted for evaluation.)

4. References cited (No page limits):

This section provides full literature references, following the standard format, which includes the authors’ names (in the correct order, as published), year of publication, title of the manuscript, title of the journal in which the work was published, volume and page numbers.

5. Figures and Tables (No page limits):

Although the Qualifying Paper will provide a part of the basis for evaluation of the student’s ability to pursue doctoral research work, the experimental results presented need not be of the quantity or the quality to provide the basis for an actual publication. The results need not even be “positive and conclusive”. Experimentation is a learning experience and mistakes are not unusual. However, imperfect results should be critically evaluated and corrections of hypotheses and experimental methods should be proposed such that the proper (successful) experiments could be done in the future. Legends to Figures and Tables should allow some understanding without need to read the main text. Define all symbols and abbreviations in the Figure or Table legend.

Oral Component

The oral part of the Qualifying Examination will test the student’s grasp of general principles of physiology and other aspects of biology and science related to the student’s specialty and area of research. It will probe the student’s ability to integrate these principles with his/her research interests, and the student’s understanding of inductive and deductive approaches of experimental biology. The student may not use or bring visual aids (e.g., LCD, overhead, etc.) to the examination but can use a chalk board or pen and paper to assist with their presentation during the oral component of the examination. The oral examination typically lasts 1-2 hours.

Qualifying Examination Committee

The Qualifying Examination Committee will consist of 3 faculty members, appointed by the department head. The student’s advisor may not serve as an examiner, so an ad hoc committee member will be chosen in case the student’s advisor is a current member of the committee. The Examination Committee will present their evaluation
of a student’s performance on both the written and oral portions of the examination to the Molecular and Integrative Physiology Faculty.

Decision

The decision on admission to the Ph.D. Program is made by the MIP Faculty and is based not only upon the findings of the Qualifying Examining Committee but also on the student’s total academic record, the evaluation of the faculty sponsor concerning research potential, and the nature of the student’s objectives.

As an outcome of the Qualifying Examination, a student may receive a M.S. degree and be found qualified to continue toward the Ph.D. degree, or a student may receive a M.S. degree, but be found unqualified for the Ph.D. Program, or neither. If deemed appropriate, a student may be allowed to retake the Qualifying Examination once and/or may be asked to rewrite the Qualifying Examination proposal if it is deemed unacceptable by the committee. Passage of the Qualifying Examination admits a graduate student to the Ph.D. level of the Graduate Program and permits enrollment in Molecular & Physiology 599, which applies research credit towards the Ph.D. degree.

Exceptional Circumstances

1. **Petition for Delaying the Exam**

If a student has unusual and compelling circumstances (e.g., switching of research advisor during the first two years of graduate study, major health issues, etc.) that prevent him/her from taking the Qualifying Examination by the end of his/her second year, the student may request a one-time extension in the form of a letter to the Head of the Department. This letter should be submitted to the Head of the Department before the second week of the fourth semester. In addition, the student must ask his/her advisor to submit a letter to support the petition. In the event the extension is denied, the student should take the Qualifying Examination in the fourth semester. If the extension is granted, the student must take the Qualifying Examination during the fifth semester.

2. **Students entering with Master’s Degree**

Regulations concerning the Qualifying Examination and grades in the Core Courses also apply to students entering with a Master’s degree from another institution. Ordinarily, the Graduate College allows 12 hours of credit transferred from an accredited institution within the past five years with grades of A or B, with depart-
mental approval. The credits can be applied towards a degree at the University of Illinois at Urbana-Champaign. Credit will not be transferred if it has been applied to another degree. Only after the student has successfully completed at least eight hours of graduate work on the Urbana-Champaign campus can such a request for transfer of credit be made. The request should be submitted to the Courses and Curriculum Committee on the Graduate Student Petition form.

8. Student Advisory Committee

A Student Advisory Committee will be formed early in each Ph.D. candidate’s career. The Courses and Curriculum Committee will screen the members of each proposed Student Advisory Committee to ascertain that adequate breadth is provided. The student and Thesis advisor will meet with the Advisory Committee no later than the end of the semester after the Qualifying Examination, normally the first semester of the third year.

The Student Advisory Committee, in consultation with the advisor, has the responsibility of assisting the student in planning appropriate advanced course work to ensure that the student satisfies MIP requirements. Every candidate for the Ph.D. in MIP is required to obtain a broad knowledge of physiology and a high degree of expertise in their area of specialization. Proficiency should also be developed in related disciplines, such as biochemistry, statistics, computer science, etc.

The Student Advisory Committee will consist of the thesis advisor and at least two other faculty members and should contain at least two members who are core MIP faculty members. The Student Advisory Committee will serve as the nucleus for the Preliminary Examination Committee. At least one faculty member from outside the Department will be added to the Committee to form the Preliminary Examination Committee. The Student Advisory Committee should be available to offer the student advice about the Preliminary Examination as well as the student’s research program.

9. Preliminary Examination

During the first semester of the first year of graduate school, all students are considered School of MCB graduate students. As such, they take the MCB core graduate courses: MCB 501 (4 credit hours) and MCB 502 (4 credit hours). In addition, the students also register for rotations (3 credit hours of MCB 581 for the first rotation,
3 credit hours of MCB 582 for the second rotation, and 3 credit hours of MCB 583 for the third rotation). Thus, for the first semester of the first year of graduate school, the student will be enrolled for a total of 17 credit hours.

Preliminary Paper

A Preliminary Paper describing in detail the thesis problem and proposed experimental approaches should be distributed to the members of the Preliminary Examination Committee at least one week before the oral exam. The Preliminary Paper should discuss extensively the significance of the project and its relationship to other work in the field and should also describe all preliminary results obtained.

Exceptional Circumstances

If a student has unusual and compelling circumstances (e.g., switching of research advisor or serious illness) during the first four years of graduate study to prevent him/her from taking the Preliminary Examination by the end of his/her fourth year, the student may request an extension in a letter to the Head of the Department, before the second week of the eighth semester. Also the student must ask his/her advisor to submit a letter to support the petition. If the extension is granted, the student must take the Preliminary Examination in the ninth semester. In the event an 8 extension is denied, the student will take the Preliminary Examination during the eighth semester.

Required Paperwork

The Graduate College requires that your exam committee be appointed at least three weeks prior to your preliminary exam. The office staff will assist you in completing the necessary paperwork.

10. Thesis

After the Preliminary Examination, students devote their time primarily to thesis research. The thesis must be deemed publishable and original. The Final Examination is administered by the Thesis Committee and is a defense of the Thesis. The Ph.D. candidate should provide each member of the Thesis Committee with a copy of the final draft of the Thesis at least one week before the Final Examination. During the Final Examination, the candidate is expected to give an oral presentation of his/her dissertation research work. The candidate is expected to demonstrate scholarly knowledge in his/her field of research and the ability to respond intellectually to questions raised by members of the Thesis Committee. Concerns and comments
raised by the Thesis Committee are generally expected to be incorporated in the Thesis. It is also expected that a Thesis contain materials suitable for high-quality scholarly publication(s) in scientific journal(s).

The final approved Thesis is submitted electronically to the Graduate College. Hard copies are usually made for the candidate and the advisor to keep and are sometimes requested by specialized laboratories where much of the research is completed (example, the Central Electron Microscope Laboratory).

11. Switching of Advisors or Programs

Selection of an advisor is one of the most important decisions that a student will make. As noted above in Section II, students are encouraged to select an advisor after the first semester of the first year. Occasionally, a student may feel that his/her intellectual or career development would be served best by changing advisors. Reasons for this decision might include a change in research interests by the student, differences between the scientific philosophies of the students and advisor, or personality conflicts. Either the student or the advisor might desire that a change be made. It is departmental policy that students should be able to change advisors when such circumstances warrant. At the same time, the decision to change advisors should not be taken lightly, since the advisor may have committed a position in the laboratory, rejecting other potential students in the process, and may have provided financial support during the early training period in expectation of increased productivity later. From the student’s perspective, it is likely that a change in advisors will increase the time to completion of the Ph.D. degree and reduce the recognition he/she would receive for any work already completed. Because of these consequences, the student and advisor should attempt to resolve any conflicts or adjust the program of the student to better fit their career objectives before making the decision to change advisors.

In the event that a student-advisor relationship breaks down, the student or the research advisor should consult the Department Head prior to switching research advisors. A written agreement may be necessary in cases that have implications for publications, ethical conduct, or grievances.

12. Ethical Conduct

Students and faculty are expected to hold the highest ethical standards during their pursuit of scholarly research. Students should become familiar with the definition
of academic misconduct (see Student Code, the Graduate College Handbook, the University of Illinois Policy and Procedures on Academic Integrity in Research and Publication, and Academic Integrity and Plagiarism) and are expected to adhere to the standards of intellectual and academic integrity as spelled out in these publications. Each student must complete the ethics course, MCB 580 “Research Ethics & Responsibilities,” offered by the School of Molecular & Cellular Biology. Any member of the University community who becomes aware of an apparent instance of academic misconduct relating to research or scholarship is obligated to report the incident or practice to the Department Head (or to the Campus Research Standards Officer in the Vice Chancellor for Research office). The Department Head and the Campus Research Standards Officer are charged with protecting the academic reputation and position of anyone who in good faith reports misconduct in scholarship or research.

13. Grievances

Students and faculty at the University of Illinois are a diverse group whose personalities, experiences, activities, and personal goals vary widely. Most conflicts and problems that arise in this environment can be resolved without invoking formal grievance procedures; such informal resolution, where possible, is generally best for all concerned. At times, however, formal grievance procedures are necessary. Any MIP graduate student with a grievance should follow the procedures outlined in the Graduate College Student Grievance policy.
Appendix A - Course Menu

(Six hours are required.)

Lecture Format:

1. MCB 400 Cancer Cell Biology 4 hr (F)
2. MCB 408 Immunology 3 hr (S)
3. MCB 410 Developmental Biology 4 hr (S)
4. MCB 413 Endocrinology 3 hr (F)
5. MCB 419 Brain, Behavior, and Information Processing 3 hr (S)
6. MCB 429 Cellular Microbiology & Disease 3 hs (S)
7. MCB 431 Microbial Physiology 3 hr (F)
8. MCB 432 Computing in Molecular Biology 3 hr (S)
9. MCB 442 Comparative Immunobiology 4 hr (S)
10. MCB 461 Cellular and Molecular Neurobiology 3 hr (F)
11. MCB 462 Integrative Neuroscience 3 hr (F)
12. MCB 571/ANSC543/STAT 530 Bioinformatics 4 hr (F)
13. MCB 480 Eukaryotic Cell Signaling 3 hr (S)
14. MCB 481 Developmental Neurobiology 3 hr (S)
15. MCB 493 Human Metabolic Disease 3 hr (S)
16. MCB 508 Intro to Systems Neuroscience 4 hr (F)
17. ECE 480 Magnetic Resonance Imaging 3 or 4 hr (S)
18. ANSC 445 Statistical Methods 4 hr (S)
19. ANSC 542 Applied Bioinformatics 4 hr (Summer)
20. ANSC 554 Immunobiological Methods 3 hr (S)
21. College of Medicine M1 Neuroscience 4 hr

Journal-Club Format:

1. *MIP Seminars in Physiology (F,S)
2. *MCB 493 Special Topics Mol Cell Biol (F,S)
3. MCB 512 Advanced Endocrinology 2 hr (S,F)
4. MCB 513/Neur513 Survey of Neurobiology 1 hr (F)
5. MCB 530 Reproductive Physiology Seminar 1 hr (F,S)
6. *Neuro 520 Advanced Topics in Neuroscience (F,S)
7. *MCB 529 Special Topics in Cell Devel Biol (F,S)

*Various sections with variable hr. Approval of CCC is required to receive credit toward the required 6 hr

Laboratory Format:

1. MCB 403 Cell & Membrane Physiology Lab 1 hr (F)
2. MCB 404 Systems and Integrative Physiology Lab 1 hr (S)
3. MCB 417 Modeling Neural Systems 4 hr (S)
4. BIOC 455 Techniques Biochem & Biotech 4 hr (F, S)
5. ECE 415 Biomedical Instrumentation Laboratory 2 hr (S)

Additional courses may be substituted pending approval of the Courses and Curriculum Committee.
Appendix B - Summary of Schedule and Deadlines

Each Year All students submit their annual progress report by August 15

Year 1 Lab Rotations and Core Graduate Courses through MCB – 1st 15 weeks
Year 1 Select a thesis advisor and lab at the end of 15 weeks.
 (In some cases a fourth rotation may be required.)
Year 2 Submit Qualifying Paper by March 15, 4:00 P.M.
 Take MIP Qualifying Exam Spring semester (exceptions require a written petition).
Year 3 Select thesis committee members and hold an Advisory Committee
 Meeting during the Fall semester.
Year 3 Recommended that the Preliminary Exam be taken during the Spring semester.
Year 4 Preliminary Exam must be taken by the end of the Spring semester.
Year 6 Strongly recommended that the thesis be defended before the end of the sixth year.
Appendix C - Annual Meetings

Post-qualifying students are required to meet annually with their thesis committee. The progress of the student and the most recent annual report will be considered at the meeting.

Year 2 Qualifying Exam – normally in the second semester

Year 3 Advisory Committee meeting – normally in the first semester

Year 3 Preliminary Exam (recommended for the second semester) or Thesis Committee progress meeting

Year 4 Preliminary Exam (if not taken in Year 3), Thesis Defense, or Thesis Committee progress meeting

Year 5+ Thesis Defense or Thesis Committee progress meeting each year
Print out this page, obtain the signature of your advisor, the DGS, and the Head, and submit it to the Department Office, 524 Burrill, by August 15.

Student:

Advisor:

I have read and approved this annual report.

__
Advisor’s Signature

__
Date

Post-submission check list:

__
Director of Graduate Studies

☐ Satisfactory

☐ Unsatisfactory – indicate recommended steps to be taken

__
Department Head

☐ Satisfactory

☐ Unsatisfactory – indicate recommended steps to be taken

Letter/email of review results sent to student by the Head:

__
Date
MIP Graduate Student Annual Progress Report 8/15/16 - 8/15/17

Return by e-mail to Rachel McCool (rmccool@illinois.edu) Deadline: August 15

Name:
Advisor:

Courses taken in the past year (Semester, Year, Rubric: Course number) *

Form of support (RA, TA, Traineeship/program, Fellowship/ agency)
(Semester [Fall, Spring, Summer], Year, form of support) *

Title (or 1 sentence summary) of your research project or thesis

Summary of your research progress this past year (1/2 page max):

Scientific meetings you’ve attended in the past year (Year, name, location, title of poster or talk presentation, if any) *

Publications in the last year, including abstracts *

*For these sections also copy and paste the entries into the cumulative history section
Cumulative History

Name: Advisor(s):

Please review and revise if necessary.

Year you entered graduate school at UIUC: _____
 ____Ph.D or _____M.D./Ph.D

Year you took or plan to take your Qualifying Examination: ______
Year you took or plan to take your Preliminary Examination: _____
Year you anticipate defending your Thesis: ______

Postdoctoral plans, if known:

Prelim or thesis committee members:

Courses taken in graduate school at UIUC (update with the past year’s courses):

Support history (update with the past year’s support):

Meetings attended and Presentations (update with the past year’s meetings)

Publications (Update with the past year’s publications)
MIP Qualifying Exam Face Page

MIP Qualifying Examination – Written Portion

FACE PAGE

<table>
<thead>
<tr>
<th>Title</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Student’s Name</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Advisor’s Name</th>
<th></th>
</tr>
</thead>
</table>

I have read the final version of this qualifying paper and certify that it is in the correct format

<table>
<thead>
<tr>
<th>Advisor’s Signature</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td></td>
</tr>
</tbody>
</table>

Actual Page Numbers

<table>
<thead>
<tr>
<th>Cover Page (one page maximum)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Aims (one page maximum)</td>
<td></td>
</tr>
<tr>
<td>Research Strategy (nine pages max)</td>
<td></td>
</tr>
<tr>
<td>References (no page limit)</td>
<td></td>
</tr>
</tbody>
</table>

[PDF version](#) of this face page can be found here.

[Word version](#) of this face page can be downloaded here.