Skip to main content

Auinash Kalsotra

Professor of Biochemistry
William C. Rose Professorial Scholar
Assistant Director, MCB Junior Faculty Mentoring & Advising

Research Interests

Research Topics

Development, Genetics, Genomics, Metabolic Regulation, Protein-Nucleic Acid Interactions, Regulation of Gene Expression, RNA Biology

Disease Research Interests

Cancer, Drug Discovery, Heart Disease, Stroke, and Thrombosis, Metabolic Disorders/Diabetes, Trauma, Bleeding & Tissue Regeneration

Research Description

Tissue development, regeneration and disease, MicroRNAs, Myotonic dystrophy, RNA therapeutics


The unifying theme of Kalsotra lab's research is to identify post-transcriptional mechanisms that are key for normal tissue development, and when misregulated result in disease. Our major goal is to capitalize on these insights and apply them as therapeutic approaches for tissue regeneration and repair.

We employ tissue-specific knockout/transgenic mouse models, biochemistry, and genome-wide molecular approaches (RNA-seq and iCLIP) to define the post-transcriptional regulatory networks that coordinate developmental and regenerative programs.

1. Alternative splicing regulation in heart and liver development.

Alternative splicing is a process by which a single gene produces multiple polypeptides with potentially different functions. Over 90% of human genes are alternatively spliced giving rise to greater than 100,000 proteins from less than 20,000 genes.

Due to tight spatiotemporal control, alternative splicing not only generates an extremely diverse proteome but also directs its regulated expression in response to a wide range of cues. Importantly, splicing defects are now recognized as central to many human diseases including neurological disorders, muscular dystrophies and cancer.

In this project we are systematically investigating the role of alternative splicing in mammalian heart and liver tissue development. We are also utilizing modified antisense oligonucleotides to investigate the phenotypic consequences of individual mRNA processing events on liver physiology and function.

2. Functional role of alternative splicing in liver regeneration.

The liver carries out a large number of physiological processes, and is therefore, indispensable for organismal survival. Although the human liver possesses an exceptional ability to regenerate, it often fails to repair itself during many liver disorders.

We have recently identified a developmentally regulated splicing network in mice that is redeployed during adult liver regeneration.

The major goal of this project is to delineate the mechanisms that are instrumental in re-initiating the developmental splicing program in response to liver injury. These studies will provide important insights into how quiescent stem cells and hepatic progenitors may be instructed to proliferate or differentiate to combat different liver disorders.

3. MicroRNAs and small molecule therapeutics for myotonic dystrophy.

Myotonic dystrophy type 1 (DM1) is an autosomal dominant, multi-systemic neuromuscular disorder that is a common cause of congenital and adult onset muscular dystrophy. The causative mutation is a CTG expansion in the 3’-UTR of DMPK gene resulting in aberrant expression of CUG repeat containing RNA that accumulates in nuclear foci, depletes a splicing regulatory protein, MBNL1, and causes misregulation of developmentally regulated alternative splicing.

From a global screen in a heart-specific and inducible DM1 mouse model, we have recently discovered a specific defect in Mef2 transcriptional program in DM1 that results in loss of expression of its target genes including scores of cardiac microRNAs. We are currently optimizing different therapeutic approaches to correct microRNA misregulation in DM1 cell culture and mouse models.

In collaboration with Steve Zimmerman laboratory, (UIUC), we are also testing the in vivo efficacy of their small molecule inhibitors that can release Mbnl1 from the CUG RNA in a DM1 mouse model.

4. mRNA polyadenylation in heart development and disease.

As transcription terminates, the 3’-end of most eukaryotic mRNAs is cleaved and polyadenylated. Polyadenylation adds a 3’-poly(A) tail that is bound by the poly(A)-binding proteins to regulate mRNA stability, localization and translation.

More than 50% of mammalian genes use alternative poly(A) sites, which affect the mRNA’s accessibility to regulatory factors including microRNAs and RNA binding proteins. While the choice of poly(A) site(s) selection is tightly regulated during development, the key determinative factors affecting this process are largely unknown.

We are currently studying the regulatory programs that control alternative polyadenylation during mouse heart development. We are also characterizing the roles of poly(A) binding proteins in cardiac development and disease.


B.S., 1999, Birla Institute of Technology and Science, Pilani, India
Ph.D., 2005, University of Texas, Houston
Postdoc., 2006-2010, Baylor College of Medicine, Houston
Inst. 2011-2012 Baylor College of Medicine, Houston

Awards and Honors

2021- William C. Rose Professorship in Biochemistry

2020, 19, 18, 17, 16, 15, 14- Listed in "Teachers Ranked as Excellent"

2019- Distinguished Promotion Award, UIUC

2017- Research Award, Muscular Dystrophy Association

2016- Beckman Fellow, Center for Advanced Study, UIUC

2014- Basil O' Connor Starter Scholar Research Award, March of Dimes

2013- Young Investigator Award, Roy J. Carver Charitable Trust

2011- Scientist Development Grant, American Heart Association

Additional Campus Affiliations

Highlighted Publications


1. Dewald ZL, Chembazhi UV, Gupta A, Kalsotra A.  Altered drug metabolism and increased susceptibility to fatty liver disease in an inducible liver-specific mouse model of myotonic dystrophy.
bioRxiv. 2021.04.06.438688; doi:

Journal Articles

1. Piersma SJ*, Bangru S*, Yoon J, Liu TW, Yang L, Hsieh CS, Plougastel-Douglas B, Kalsotra A#, Yokoyama WM# (2023) NK cell expansion requires HuR and mediates control of solid tumors and long-term virus infection.
J. Exp. Med. Nov 6;220(11):e20231154.
*denotes equal authors
#denotes co-senior authors       

2. Arif W, Mathur B, Saikali MF, Chembazhi UV, Toohill K, Song YJ, Has Q, Karimi S,  Blue SM, Yee BA, Van Nostrand EL, Bangru S, Guzman G, Yeo GW, Prasanth KV, Anakk S, Cummins C, Kalsotra A (2023) Splicing factor SRSF1 deficiency in the liver causes NASH-like pathology and cell death.
Nature Commun. Feb 9;14(1):551.

• Press coverage

3. Chembazhi UV*, Tung WS*, Hwang H*, Wang Y, Lalwani A, Nguyen KL, Bangru S, Yee D, Chin K, Yang J, Kalsotra A# and Mei W# (2023) PTBP1 controls intestinal epithelial regeneration through post-transcriptional regulation of gene expression.
Nucleic Acids Res. Feb 6:gkad042. DOI: 10.1093/nar/gkad042.
*denotes equal authors
#denotes co-corresponding authors

• Press coverage

4. Chembazhi UV*, Bangru S*, Hernaez M, Kalsotra A (2021) Cellular plasticity balances the metabolic and proliferation dynamics of a regenerating liver.
Genome Res. Apr; 31(4):576-591.
*denotes equal authors

• Highlighted by News & Views article in Nature Reviews Gastroenterol. & Hepatol.
• Press coverage

5. Misra C, Bangru S, Lin F, Lam K, Koenig SN, Lubbers ER, Hedhli J, Dobrucki LW, Cooper TA, Tajkhorshid E, Mohler PJ, Kalsotra A (2020) Aberrant expression of a non-muscle RBFOX2 isoform triggers cardiac conduction defects in myotonic dystrophy.
Dev. Cell. Mar 23; 52(6):748-763.

• Press coverage

6. Hyun J, Sun Z, Ahmadi AR, Bangru S, Chembazhi UV, Du K, Chen T, Tsukamoto H, Rusyn I, Kalsotra A# and Diehl AM# (2020) Epithelial splicing regulatory protein 2-mediated alternative splicing reprograms hepatocytes in severe alcoholic hepatitis.
J. Clin. Invest. Mar 16; 130(4):2129-2145.
#denotes co-corresponding authors

7. Lee J*, Bai Y*, Chembazhi UV, Peng S, Yum K, Luu LM, Hagler LD, Serrano JF, Chan, HYE, Kalsotra A# and Zimmerman SC# (2019) Intrinsically cell-penetrating multivalent and multi-targeting ligands for Myotonic Dystrophy type 1.
Proc. Natl Acad. Sci. USA. Apr 30; 116(18):8709-8714.
*denotes equal authors
#denotes co-corresponding authors

• Highlighted by Myotonic Dystrophy Foundation

8. Seimetz J, Arif W, Bangru S, Hernaez M, and Kalsotra A (2019) Cell-type specific polysome profiling from mammalian tissues. Methods Feb 15; 155:131-139.

• ShiRlOc - Shifts in Ribosomal Occupancy (software)

9. Bangru S*, Arif W*, Seimetz J, Bhate A, Chen J, Rashan EH, Carstens RP, Anakk S, and Kalsotra A (2018) Alternative splicing rewires Hippo signaling pathway in hepatocytes to promote liver regeneration.
Nature Struct. Mol. Biol. Oct 1; 25(10):928-939.
*denotes equal authors

• Covered by the Naked Scientists Podcast
• Highlighted by Visible Embryo, Health24 News, and Fight Aging
• Press coverage

10. Chorghade S*, Seimetz J*, Emmons RS, Yang J, Bresson SM, De Lisio M, Parise G, Conrad NK, and Kalsotra A (2017) Poly(A) tail length regulates PABPC1 expression to tune translation in the heart. eLIFE 6:e24139. DOI: 10.7554/elife.24139
* denotes equal authors

• Commentary by Gray and Gray
• Highlighted by Nature Reviews Cardiology
• Featured as the cover article.
• Video abstract
• Press coverage

11. Lewis CJ, Pan T and Kalsotra A (2017). RNA modifications and structures cooperate to guide RNA-protein interactions. Nature Reviews Mol. Cell Biol.
(3):202-210. DOI: 10.1038/nrm.2016.163.

12. Yum K, Wang ET and Kalsotra A (2017). Myotonic dystrophy: disease repeat range, penetrance, age of onset, and relationship between repeat size and phenotypes.
Curr. Opin. Genet. Dev. 44:30-37. DOI: 10.1016/j.gde.2017.01.007.

• Highlighted by Myotonic Dystrophy Foundation

13. Bhate A*, Parker DJ*, Bebee TW, Ahn J, Arif W, Rashan EH, Chorghade S, Chau A, Lee JH, Anakk S, Carstens RP, Xiao X and Kalsotra A (2015). ESRP2 controls an adult splicing program in hepatocytes to support postnatal liver maturation.
Nature Commun. 6:8768. DOI: 10.1038/ncomms9768.
* denotes equal authors

• Highlighted by Healio and Genetic Engineering & Biotechnology News
• Press coverage

14. Kalsotra A and Cooper TA (2011). “Functional consequences of developmentally regulated alternative splicing”. Nature Reviews Genet. 12, 715-29.

• Chosen as the feature article
• Highlighted as the cover article

Recent Publications

Adesanya, O., Das, D., & Kalsotra, A. (2024). Emerging roles of RNA-binding proteins in fatty liver disease. Wiley interdisciplinary reviews. RNA, 15(2), Article e1840.

Arif, W., Mathur, B., Saikali, M. F., Chembazhi, U. V., Toohill, K., Song, Y. J., Hao, Q., Karimi, S., Blue, S. M., Yee, B. A., Van Nostrand, E. L., Bangru, S., Guzman, G., Yeo, G. W., Prasanth, K. V., Anakk, S., Cummins, C. L., & Kalsotra, A. (2023). Splicing factor SRSF1 deficiency in the liver triggers NASH-like pathology and cell death. Nature communications, 14(1), Article 551.

Chembazhi, U. V., Tung, W. S., Hwang, H., Wang, Y., Lalwani, A., Nguyen, K. L., Bangru, S., Yee, D., Chin, K., Yang, J., Kalsotra, A., & Mei, W. (2023). PTBP1 controls intestinal epithelial regeneration through post-transcriptional regulation of gene expression. Nucleic acids research, 51(5), 2397-2414. Article gkad042.

Derham, J. M., & Kalsotra, A. (2023). The discovery, function, and regulation of epithelial splicing regulatory proteins (ESRP) 1 and 2. Biochemical Society transactions, 51(3), 1097-1109.

Piersma, S. J., Bangru, S., Yoon, J., Liu, T. W., Yang, L., Hsieh, C. S., Plougastel-Douglas, B., Kalsotra, A., & Yokoyama, W. M. (2023). NK cell expansion requires HuR and mediates control of solid tumors and long-term virus infection. Journal of Experimental Medicine, 220(11), Article e20231154.

View all publications on Illinois Experts

In the news